Table 550.1 KDIGO Staging of Acute Kidney Injury

STAGE	SERUM CREATININE	URINE OUTPUT
1	1.5-1.9 times baseline, OR ≥0.3 mg/dL increase	<0.5 mL/kg/hr for 6-12 hr
2	2.0-2.9 times baseline	$<$ 0.5 mL/kg/hr for \ge 12 hr
3	3.0 times baseline, OR SCr ≥ 4.0 mg/dL, OR Initiation of renal replacement therapy, OR eGFR < 35 mL/min per 1.73 m² (< 18 yr)	<0.3 mL/kg/hr for ≥ 24 hr, OR Anuria for ≥ 12 hr

Table 550.2 Common Causes of Acute Kidney Injury

PRERENAL

Dehydration

Gastroenteritis

Hemorrhage

Burns

Sepsis

Capillary leak

Hypoalbuminemia

Cirrhosis

Abdominal compartment syndrome

Cardiac failure Anaphylaxis

INTRINSIC RENAL

Glomerulonephritis

Postinfectious/poststreptococcal

Lupus erythematosus

Henoch-Schönlein purpura

Membranoproliferative

Anti-glomerular basement membrane

Hemolytic-uremic syndrome

Acute tubular necrosis

Cortical necrosis

Renal vein thrombosis

Rhabdomyolysis

Acute interstitial nephritis

Tumor infiltration

Toxin and drugs (see Table 550.3)

Tumor lysis syndrome

Vasculitis

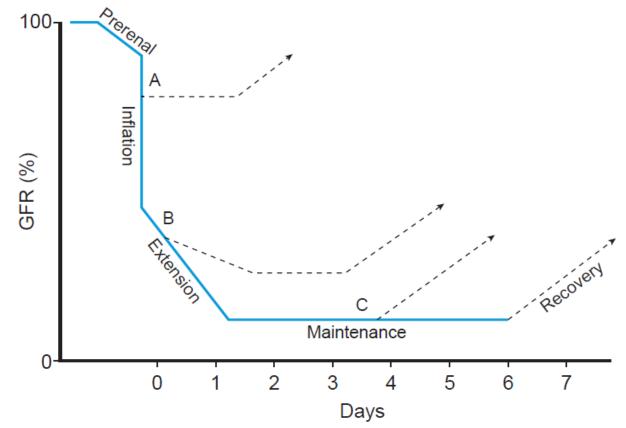
POSTRENAL

Posterior urethral valves

Ureteropelvic junction obstruction

Ureterovesicular junction obstruction

Ureterocele


Tumors

Urolithiasis

Urethral strictures

Hemorrhagic cystitis

Neurogenic bladder Anticholinergic drugs

Fig. 550.1 Phases of acute kidney injury. GFR, glomerular filtration rate. (From Sutton TA, Fisher CJ, Molitoris BA: Microvascular endothelial injury and dysfunction during ischemic acute renal failure, Kidney Int 62:1539-1549, 2002.)

Table 550.3

Major Endogenous and Exogenous Toxins Causing Acute Tubular Injury

ENDOGENOUS TOXINS

MYOGLOBULINURIA

Muscle breakdown—trauma, compression, electric shock, hypothermia, hyporthermia, seizures, exercise, burns
Metabolic—hypokalemia, hypophosphatemia
Infections—tetanus, influenza
Toxins—isopropyl alcohol, ethanol, ethylene glycol, toluene, snake and insect bites, cocaine, heroin
Drugs—HMG-CoA reductase inhibitors (statins), amphetamines fibrates
Inherited disease—deficiency of myophosphorylase,

phosphofructokinase, carnitine

dermatomyositis HEMOGLOBINURIA

palmitoyltransferase

Autoimmune—polymyositis,

Mechanical—prosthetic valves, microangiopathic hemolytic anemia, extracorporeal circulation Drugs—hydralazine, methyldopa Chemicals—benzene, arsine, fava beans, glycerol, phenol Immunologic—transfusion reaction Genetic—G6PD deficiency, PNH

EXOGENOUS TOXINS

ANTIBIOTICS

Aminoglycosides

Amphotericin B

Antiviral agents—acyclovir,
cidofovir, indinavir,
foscarnet, tenofovir

Pentamidine

Vancomycin

CHEMOTHERAPY

Cisplatin Ifosfamide Plicamycin 5-Fluorouracil Cytarabine 6-Thioguanine Methotrexate

CALCINEURIN INHIBITORS

Cyclosporine Tacrolimus

ORGANIC SOLVENTS

Toluene Ethylene glycol

POISONS

Snake venom Paraquat

MISCELLANEOUS

Radiocontrast media
Intravenous immune globulin
Nonsteroidal antiinflammatory
drugs
Oral phosphate bowel
preparations

INTRATUBULAR OBSTRUCTION FROM CRYSTALLURIA OR PARAPROTEINS

Tumor lysis syndrome HGPT deficiency Multiple myeloma Oxalate (ethylene glycol)

G6PD, Glucose-6-phosphate dehydrogenase; HGPRT, hypoxanthine-guanine phosphoribosyltransferase; HMG-CoA, 3-hydroxy-3-methylglutaryl–coenzyme A; PNH, paroxysmal nocturnal hemoglobinuria.

From Sharfuddin AA, Weisbord SD, Palevsky PM, Molitoris BA: Acute kidney injury. In Skorecki K, Chertow GM, Marsden PA, et al (eds): Brenner & Rector's the kidney, 10/e, Philadelphia, 2016, Elsevier, Tab 31-5.

Table 550.4	Urinalysis, Urine Chemistries, and Osmolality in Acute Kidney Injury

-		HYPOVOLEMIA	ACUTE TUBULAR NECROSIS	ACUTE INTERSTITIAL NEPHRITIS	GLOMERULONEPHRITIS	OBSTRUCTION
	Sediment	Bland, may have hyaline casts	Broad, brownish granular casts	White blood cells, eosinophils, cellular casts	Red blood cells, red blood cell casts	Bland or bloody
	Protein	None or low	None or low	Minimal but may be increased with NSAIDs	Increased, > 100 mg/dL	Low
	Urine sodium (mEq/L)*	<20	>40	>30	<20	<20 (acute) >40 (few days)
	Urine osmolality (mOsm/kg)	>400	<350	<350	>400	<350
	Fractional excretion of sodium % [†]	<1	>2‡	Varies	<1	<1 (acute) >1 (few days)

^{*}The sensitivity and specificity of urine sodium of < 20 mEq/L in differentiating prerenal azotemia from acute tubular necrosis are 90% and 82%, respectively.

†Fractional excretion of sodium is the urine:plasma (U:P) ratio of sodium divided by U:P of creatinine ×100. The sensitivity and specificity of fractional excretion of sodium of < 1% in differentiating prerenal azotemia from acute tubular necrosis are 96% and 95%, respectively.

†The fractional excretion of sodium may be < 1% in acute tubular necrosis secondary to radiocontrast material or rhabdomyolysis.

NSAIDs. nonsteroidal antiinflammatory drugs.

Table 550.5 Common Complications of Acute Kidney Injury						
METABOLIC CARE	DIOPULMONARY	GASTROINTESTINAL	NEUROLOGIC	HEMATOLOGIC	INFECTIOUS	OTHER
Metabolic acidosis Arrhy Hyponatremia Perica Hypocalcemia Perica Hyperphosphatemia Hype Hypermagnesemia Myoc	nonary edema ythmias carditis cardial effusion ertension cardial infarction nonary embolism	Nausea Vomiting Malnutrition Hemorrhage	Neuromuscular irritability Asterixis Seizures Mental status changes	Anemia Bleeding	Pneumonia Septicemia Urinary tract infection	Hiccups Elevated parathyroid hormone level Low total triiodothyronine and thyroxine levels Normal thyroxine level

Table 550.6

Comparison of Peritoneal Dialysis, Intermittent Hemodialysis, and Continual Renal Replacement Therapy

	PD	IHD	CRRT
BENEFITS Fluid removal Urea and creatinine clearance Potassium clearance Toxin clearance	+ + ++ +	++ ++ ++ ++	++ + +
COMPLICATIONS Abdominal pain Bleeding Dysequilibrium Electrolyte imbalance	+ - - +	- + +	- + - +
Need for heparinization Hyperglycemia Hypotension Hypothermia	- + +	+ - ++ -	+/- - + +
Central line infection Inguinal or abdominal hernia Peritonitis Protein loss Respiratory compromise	- + + +	+ - - -	+ - - -
Vessel thrombosis	_	+	+

PD, peritoneal dialysis; IHD, intermittent hemodialysis; CRRT, continual renal replacement therapy.

Table 550.9

Etiologies of Pediatric Chronic Kidney Disease

NONGLOMERULAR	GLOMERULAR
Aplastic, hypoplastic, and dysplastic kidneys Cystinosis Medullary cystic kidney disease/juvenile nephronophthisis Obstructive uropathy (e.g., PUV, cloaca, neurogenic bladder) Oxalosis Autosomal dominant and autosomal recessive polycystic kidney disease (ADPKD, ARPDK) Pyelonephritis/interstitial nephritis/reflux nephropathy Renal infarct Syndrome of agenesis of abdominal musculature (Eagle-Barrett syndrome) Wilms tumor	Chronic glomerulonephritis (including focal segmental glomerulonephritis [FSGS]) Congenital nephrotic syndrome (CNS) Hemolytic-uremic syndrome (HUS) Henoch-Schönlein nephritis (HSP nephritis) Idiopathic crescentic glomerulonephritis IgA nephropathy (IGAN) Membranoproliferative glomerulonephritis (MPGN) Membranous nephropathy Sickle cell nephropathy Systemic immunologic disease (e.g., SLE, Wegener granulomatosis) Hereditary nephritis (Alport syndrome)

Table 550.7 Criteria for Definition of Chronic Kidney Disease (NKF KDOQI Guidelines)

Patient has chronic kidney disease (CKD) if either of the following criteria are present:

- Kidney damage for ≥ 3 mo, as defined by structural or functional abnormalities of the kidney, with or without decreased GFR, manifested by one or more of the following features:
 - Abnormalities in the composition of the blood or urine
 - Abnormalities in imaging tests
 - Abnormalities on kidney biopsy
- 2. GFR < 60 mL/min/1.73 m² for ≥ 3 mo, with or without the other signs of kidney damage described above

NKF KDOQI, National Kidney Foundation Kidney Disease Outcomes Quality Initiative.

Standardized Terminology for Stages of Chronic Kidney Disease (NKF KDOQI Guidelines)
Guidelines)

STAGE	DESCRIPTION	GFR (mL/min/1.73 m ²)
1	Kidney damage with normal or increased GFR	≥90
2	Kidney damage with mild decrease in GFR	60-89
3	Moderate decrease in GFR	30-59
4	Severe decrease in GFR	15-29
5	Kidney failure	<15 or on dialysis

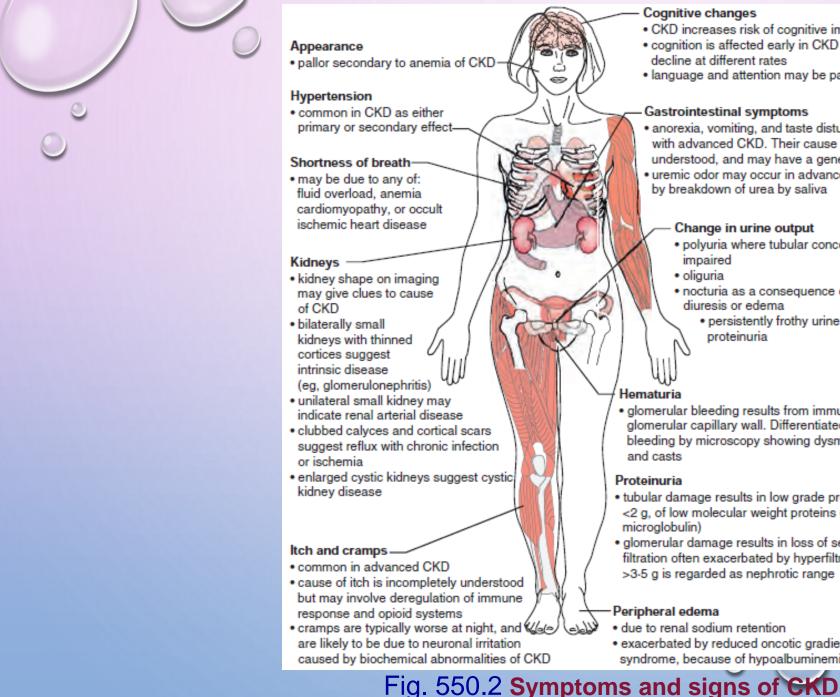
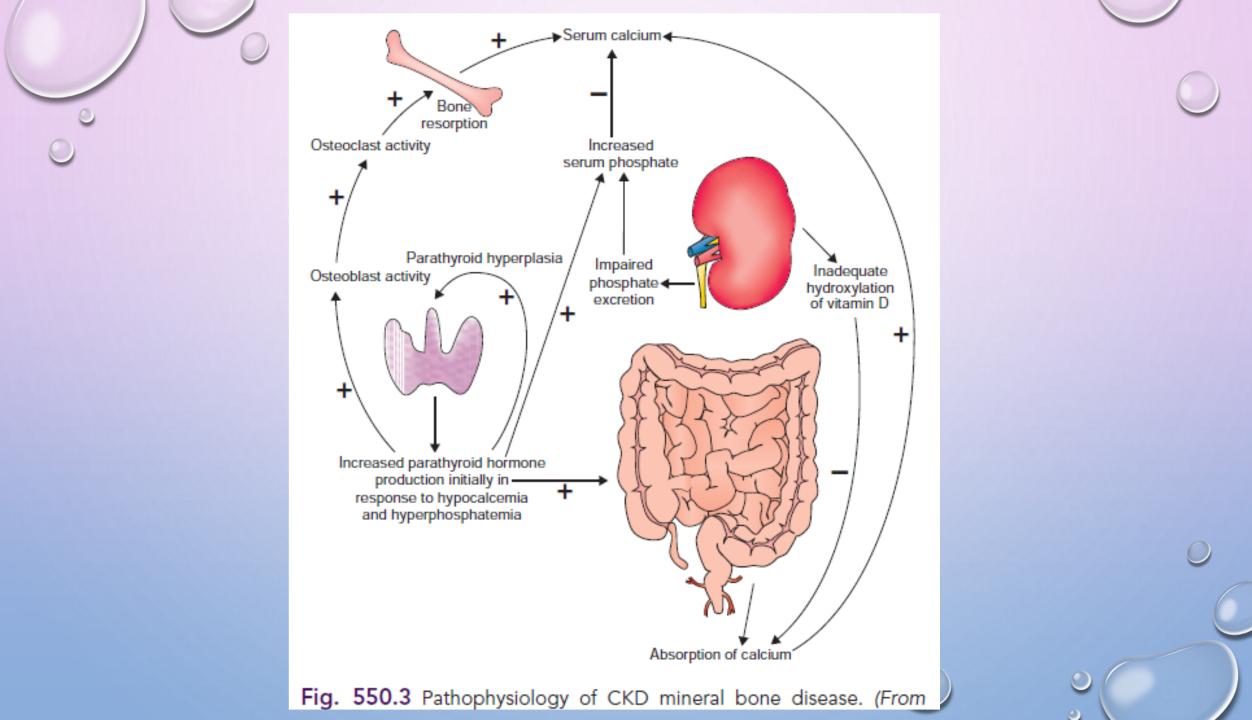

GFR, glomerular filtration rate; NKF KDOQI, National Kidney Foundation Kidney Disease Outcomes Quality Initiative.

Table 550.10 Pathophysiology of Chronic Kidney Disease

MANIFESTATION	MECHANISMS
Accumulation of nitrogenous waste products	Decrease in glomerular filtration rate
Acidosis	Decreased ammonia synthesis Impaired bicarbonate reabsorption Decreased net acid excretion
Sodium wasting	Solute diuresis Tubular damage
Urinary concentrating defect	Solute diuresis Tubular damage
Hyperkalemia	Decrease in glomerular filtration rate Metabolic acidosis Excessive potassium intake Hyporeninemic hypoaldosteronism
Renal osteodystrophy	Impaired renal production of 1,25-dihydroxycholecalciferol (1,25OH ₂ D) Hyperphosphatemia Hypocalcemia Secondary hyperparathyroidism
Growth retardation	Inadequate caloric intake Renal osteodystrophy Metabolic acidosis Anemia Growth hormone resistance

Continued

Anemia	Decreased erythropoietin production Iron, folate, and/or vitamin B ₁₂ deficiency Decreased erythrocyte survival
Bleeding tendency	Defective platelet function
Infection	Defective granulocyte function Impaired cellular immune functions Indwelling dialysis catheters
Decreased academic achievement, attention regulation, or executive functioning	Hypertension Low birth weight
Gastrointestinal symptoms (feeding intolerance, abdominal pain)	Gastroesophageal reflux Decreased gastrointestinal motility
Hypertension	Volume overload Excessive renin production
Hyperlipidemia	Decreased plasma lipoprotein lipase activity Abnormal HDL-C
Cardiomyopathy	Hypertension Anemia Fluid overload
Glucose intolerance	Tissue insulin resistance



- CKD increases risk of cognitive impairment by 65%
- . cognition is affected early in CKD but different skills
- language and attention may be particularly affected
- · anorexia, vomiting, and taste disturbance may occur with advanced CKD. Their cause is incompletely understood, and may have a genetic component.
- uremic odor may occur in advanced CKD, caused
 - · polyuria where tubular concentrating ability is
 - nocturia as a consequence of impaired solute
 - · persistently frothy urine may indicate

· glomerular bleeding results from immune injury to the glomerular capillary wall. Differentiated from lower tract bleeding by microscopy showing dysmorphic red cells

- tubular damage results in low grade proteinuria typically <2 g, of low molecular weight proteins (eg, beta-2
- · glomerular damage results in loss of selectivity to protein filtration often exacerbated by hyperfiltration. Losses
- · exacerbated by reduced oncotic gradient in nephrotic syndrome, because of hypoalbuminemia

Fig. 550.2 Symptoms and signs of CKD.

